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1 Service de Physique de l’État Condensé, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
2 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100,
Israel

Received 13 February 2005, in final form 1 June 2005
Published 6 July 2005
Online at stacks.iop.org/JPhysA/38/L523

Abstract
Condensation transition in two-species driven systems in a ring geometry is
studied in the case where the current–density relation of a domain of particles
exhibits two degenerate maxima. It is found that the two maximal-current
phases coexist both in the fluctuating domains of the fluid and in the condensate,
when it exists. This has a profound effect on the steady-state properties of the
model. In particular, phase separation becomes more favourable, as compared
with the case of a single maximum in the current–density relation. Moreover,
a selection mechanism imposes equal currents flowing out of the condensate,
resulting in a neutral fluid even when the total numbers of particles of the two
species are not equal. In this case, the particle imbalance shows up only in the
condensate.

PACS numbers: 05.70.Ln, 82.20.Nk

Many properties of the phase diagram of driven systems are known to be determined by some
overall features of the current–density relation. For example, this relation serves as a starting
point for analysing models of vehicular traffic [1], where it is termed the fundamental diagram.
It is also a useful tool for analysing boundary-induced phase transitions in one-dimensional
systems [2, 3], and stability of shocks [4]. The aim of this paper is to investigate how these
global features affect the properties of condensation transitions in driven diffusive systems
(DDS) on a ring. To this end, we analyse in detail the case where the current–density relation
has two degenerate maxima. This is found to have far-reaching consequences on the emergence
of phase separation. It results in new features which are not present in the previously studied
case of a current–density relation with a single maximum [5–7].

Condensation transitions in one-dimensional DDS have been studied in detail in recent
years [8]. In particular, it was suggested that on a mesoscopic level one can describe the
dynamics of a broad class of two-species DDS by a zero-range process (ZRP) [5, 7]. In this
description one views the microscopic configuration of the model as a sequence of particle
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domains, bounded by vacancies. Each domain is defined as a stretch of particles of both
types. Neighbouring domains exchange particles through their currents. The existence of
condensation in these models, analogous to Bose–Einstein condensation (BEC), was found to
be related to the dependence of these currents on the length of the domains. A quantitative
criterion for the existence of a condensation transition in a ring geometry was thus suggested.
According to this criterion, if the asymptotic form of the current for large domains of length
n behaves as jn ∼ j∞(1 + b/n), with b > 2, a condensation transition takes place at a
sufficiently high overall particle density. This form of the current implies that, at criticality,
the steady-state domain-size distribution scales as pn ∼ n−b for large n. The condensed phase
is composed of a critical fluid of fluctuating domains coexisting with a single macroscopically
large condensate. This is analogous to BEC, where condensation takes place in momentum
space rather than real space.

The criterion has previously been applied to models where the current–density curve
j∞(η) in the bulk of a domain exhibits a single maximum [5–7]. Here we apply this approach
to a model where j∞(η) has two degenerate maxima, and examine the condensation transition
in cases where, on average, the density within the domains lies between the two extremal
values corresponding to the two maxima. A simple physical picture for the dynamics inside
a domain is inferred from numerical simulations of the model. This picture is substantiated
by analysing the properties of a two-species ZRP for modelling the collective dynamics of
domains. Our main findings are: (i) the density in each particle domain (whether a fluid
or a condensate) is not homogeneous. The two maximal-current phases coexist within each
domain, with a sharp interface separating the two. The density profile of each of these phases is
algebraic, as expected for maximal-current phases. (ii) The non-homogeneous density profile
affects the finite-size correction of the current, leading to a finite-size correction coefficient B
which is larger than the expected b of homogeneous domains. For example, when the numbers
of particles of both species are equal, we find B � 2b. This makes phase separation in this
model more favourable. Exact solution of the ZRP in mean-field geometry and numerical
simulations of the one-dimensional ZRP support this finding. (iii) In the condensed phase,
the fluid domains are neutral, even in systems with non-equal numbers of particles of the two
species, leaving the condensate as the only imbalanced domain. This is in contrast with the
case in which the current–density curve has a single maximum, where all domains, fluid and
condensate, have the same average density.

We now define the model. Consider a one-dimensional ring with L sites. Each site i
can be either vacant (0) or occupied by a positive (+) or a negative (−) particle. Positive
particles are driven to the right while negative particles are driven to the left. In addition to
the hard-core repulsion, particles are subjected to short-range interactions through a potential

V = −ε

4

∑
i

sisi+1, (1)

where si = +1 (−1) if site i is occupied by a + (−) particle and si = 0 if site i is vacant.
The interaction parameter ε satisfies −1 < ε < 1 to ensure positive transition rates. The
evolution of the model is defined by a random-sequential local dynamics, whereby a pair of
nearest-neighbour sites is selected at random, and particles are exchanged with the following
rates:

+− → −+, with rate 1 − �V,

+0 → 0+, with rate 1,

0− → −0, with rate 1.

(2)

Here �V is the difference in the potential V between the final and initial configurations. This
dynamics conserves the numbers of particles of each species, N+ and N−, or, equivalently,
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Figure 1. The current–density relation j∞(ε, η) for ε = 0.5 (dashed line) and ε = −0.9 (solid
line).
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Figure 2. Domain-size distribution for the case ε = −0.9. Simulation was performed on a system
of size L = 5000 with N+ = N− = 1500. Configurations of the model during coarsening towards
the steady state are presented in the inset. Positive particles are marked in black, negative particles
in white and vacancies in grey. A configuration is presented every 500 Monte Carlo sweeps. The
system size is L = 1000, N+ = N− = 300 and ε = −0.9.

the overall particle densities in the system, ρ± = N±/L. For a given domain, i.e., a sequence
of positive and negative charges confined by vacancies, the relative density η is simply the
fraction of positive particles in that domain. This is a fluctuating quantity, both in time
and from domain to domain. Model (2) was studied on a ring geometry for positive ε in
[6, 7]. Here we focus on the negative ε region, where the current–density relation exhibits
two degenerate maxima, and study mainly the case ρ+ = ρ−. The non-equal density case is
briefly considered at the end of this letter, and is studied in detail in [9].

The region ε < 0 was studied in [3] in open systems with the purpose of analysing
boundary-induced phase transitions. The current–density relation of a domain of particles,
j∞(ε, η), was found to display a single maximum at η = 1/2 for ε � −0.8 and two degenerate
maxima at ηH,L = 1

2 {1 ± [3 − 2((ε − 1)/ε)1/2]1/2} for ε < −0.8, as depicted in figure 1.
We carried out direct numerical simulations of the model for ε < −0.8. In figure 2 we

present the domain-size distribution and typical configurations for ε = −0.9 at high densities
ρ+ = ρ−. This figure suggests the existence of a pronounced macroscopic domain. Examining
the configurations it is evident that the relative density within the domains is not homogeneous.
Rather, it exhibits two coexisting regions, corresponding to the two maximal-current phases.
Indeed, the densities of the two coexisting phases are equal to ηH,L, and the current in the
system is j∞(ηH) = j∞(ηL). This should be compared with an open system driven with large
boundary rates, where the system assumes its maximal current and a similar coexistence takes
place [2].
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Figure 3. The effective coefficient beff(ε) measured in open systems of size L = 400, 800, 1600
and 3200 (from top to bottom). The lines correspond to b(ε, η) (solid line) and 2b(ε, η) (dashed
line), with η = 1/2 for ε > −0.8 and η = ηH,L for ε < −0.8.

By itself, the appearance of a macroscopic domain in numerical simulations of finite
systems does not prove that condensation takes place, as the presence of such a domain could
result from a finite-size crossover [10]. The real question is whether the macroscopic domain
survives in the thermodynamic limit and becomes a genuine condensate. To answer this
question we use the criterion for phase separation, and calculate the finite-size correction to
the current of large domains. When the current–density relation has a single maximum, the
current of a domain of length n takes the asymptotic form jn ∼ j∞ [1 + b(ε, η)/n], where
b(ε, η) is explicitly known [7], and where in all domains η is given by N+/(N+ + N−). In the
present case b must be computed at the values of the density corresponding to the two maxima
of the current, η = ηH or η = ηL. For example we find b (ε = −0.9, η = ηH,L) � 1.14.
Applying the criterion with this value of b would then lead to the conclusion that the existence
of a macroscopic domain in figure 2 is merely a finite-size effect. However, as explained
below, when a domain is composed of two coexisting phases, the real finite-size correction
coefficient which enters the expression of the current is not b, but an enhanced coefficient
B � 2b, making phase separation more favourable. In other words, jn ∼ j∞ [1 + B(ε)/n],
with j∞ = j∞ (ε, η = ηH,L). In particular, this yields B (ε = −0.9) > 2, implying that
figure 2 corresponds to a genuine phase separation.

We first provide numerical evidence that indeed B � 2b. It is convenient to calculate
the finite-size correction to the current B(ε) by simulating an isolated open domain of a fixed
length n [5]. The coefficient B is then extracted by measuring the effective coefficient at finite
length beff(n) = n (jn/j∞ − 1) and extrapolating to n → ∞. In figure 3 we present beff(n)

for various values of ε and system lengths. It is found that, while for ε > −0.8 the quantity
beff approaches b (ε, η = 1/2) at large n, it is larger than b (ε, η = ηH,L) by a factor �2
for ε < −0.8. We note that higher order corrections become significant as one approaches
ε = −0.8, where the leading finite-size correction, b (ε, η = 1/2)/n, vanishes.

We now present a physical explanation of these observations. For a domain of length n,
each of the two coexisting phases occupies, on average, only a length n/2. This effectively
reduces the length of the domain by a factor 2, and thus the finite-size correction is expected
to be about �2b/n rather than b/n. Quantifying this intuitive picture leads to an estimate of
the enhancement factor A ≡ B(ε)/b(ε, ηH,L). We analyse the current emitted from a domain
of length n in the fluid, composed of two coexisting maximal-current phases. A schematic
density profile in such a domain is given in figure 4. At the left side of the domain, a fraction
x of its length is occupied by a phase with high bulk density ηH, while the remaining right
side is occupied by the other maximal-current phase, with low density ηL. The position of
the interface fluctuates in time around the midpoint, i.e., on average, 〈x〉 = 1/2. Numerical
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Figure 4. A schematic picture of a typical snapshot of the density profile within a particle domain.

simulations strongly suggest that the position x varies on time scales which are much longer
than the equilibration time of the local density within each phase [9]. We thus consider the
dynamics of the system on time scales which are short enough such that the position of the
interface x and the size of the domain n are fixed. On these time scales the currents of, say,
positive particles jH(x) and jL(x) in the high- and low-density phases, respectively, are given
by

jH(x) = j∞

(
1 +

b

nx

)
, jL(x) = j∞

(
1 +

b

n(1 − x)

)
. (3)

Thus, as a result of the flow of particles through the domain, the interface moves with a
velocity v, such that jH(x) − jL(x) = v (ηH − ηL) . The outflow of particles from the domain
is therefore given by

jH(x) − vηH = jL(x) − vηL = j∞ [1 + A(x)b/n] , (4)

where, using the expressions above, one has

A(x) = 1

ηH − ηL

(
ηH

1 − x
− ηL

x

)
. (5)

On longer time scales where the position of the interface x fluctuates, one has to average (4)
in order to get the current emitted from the domain, leading to A = 〈A(x)〉. If the fluctuations
in the position of the interface do not scale with the domain size, then 〈1/x〉 = 1/〈x〉 = 2
and hence A = 2. On the other hand, if these fluctuations scale like the domain length, then
〈1/x〉 > 1/〈x〉 and A > 2. In the following we explore this question in more detail. Our
analysis suggests that indeed the width of the interface scales with the domain length leading
to B > 2b.

Motivated by the discussion presented above, we introduce a two-species ZRP which
captures the main features of the collective dynamics of the evolving domains. Consider a
ring of M boxes, where box i contains ni particles, ki of which are positive and li are negative:
ni = ki + li . The dynamics of the model is such that a box i is chosen at random and a positive
charge is moved to its right neighbouring box with rate uk,l and a negative charge moves to its
left neighbouring box with rate vk,l . In this model, a box represents a generic domain of the
original DDS and the rates u and v correspond to the outflow of particles from this domain, as
found in (4). We thus take uk,l = 1 + A(x)b/n and vk,l = 1 + A(1 − x)b/n. The variable x is
expressed in terms of the relative density η by xηH + (1 − x)ηL = η = k/n. In what follows,
we analyse for simplicity the case ηH = 1 and ηL = 0, which yields

uk,l = 1 +
b

l
, vk,l = 1 +

b

k
. (6)

With this choice of rates the steady state of the model is not a product measure [11], implying
that no explicit description of the stationary state is known. We first consider the model in the
mean-field geometry, where all sites are connected. We denote by fk,l the probability for a
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Figure 5. The decay exponent a for different values of b, as obtained from numerical integration
of (9). The line is given by the large b asymptotic form 2b +

√
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Figure 6. The relative density η of positive particles within a domain, for a system of size 104

with ε = −0.9. Here N+ = 5000 and N− = 3000.

site to be occupied by k positive particles and l negative particles. In the thermodynamic limit,
fk,l obeys the evolution equation

dfk,l(t)

dt
= uk+1,lfk+1,l + vk,l+1fk,l+1 + ūfk−1,l(1 − δk,0) + v̄fk,l−1(1 − δl,0)

− [uk,l(1 − δk,0) + vk,l(1 − δl,0) + ū + v̄]fk,l, (7)

where ū = ∑
k,l uk,lfk,l and v̄ = ∑

k,l vk,lfk,l are the (+) and (−) currents, respectively. In
the continuum limit the steady-state distribution satisfies the following equation at criticality
(ū = v̄ = 1):

∂2fk,l

∂k2
+

∂2fk,l

∂l2
+ b

(
1

l

∂fk,l

∂k
+

1

k

∂fk,l

∂l

)
= 0. (8)

Moving to polar coordinates, and assuming the scaling solution f (r, θ) = r−ag(θ), we find
an equation for the angular function g(θ)

d2g(θ)

dθ2
+

(
a − 2b

sin 2θ

)
ag(θ) = 0, (9)

with the boundary conditions g(0) = g(π/2) = 0. The determination of the decay exponent
a is obtained by imposing the boundary conditions. This is the quantization condition for
this Schrödinger equation. Except for special values of b where a can be determined exactly
(e.g. a = 3 for b = 2/3), the value of a as a function of b is obtained by integrating (9)
numerically (figure 5). The large b asymptotic form obtained by the WKB approximation,
a � 2b +

√
2, agrees very well with these results down to small b. From the predicted form of

the solution f (r, θ), we deduce that the domain-size distribution pn, with n = k + l, scales as
pn ∼ n−(a−1). On the other hand, the rate out of a domain of size n, jn ≡ 〈uk,l〉k+l=n, is of the
form jn ∼ 1 + B/n, and we conclude that B = a − 1. Numerical integration of the temporal
equation (7) gives a decay exponent a in perfect agreement with the predicted value of the
continuum limit. This analysis shows that B � 2b, supporting the physical picture presented
above. This calculation was carried out within the mean-field geometry and should not yield
the exact values of B of the one-dimensional model. However, numerical simulations of the
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latter indicate that B is well approximated by the mean-field result [9]. Coming back to the
DDS, the results above suggest that the position of the interface inside a domain should scale
with the domain length. This has been verified by numerical simulations [9].

So far we analysed a neutral system, where ρ+ = ρ−. We now consider the case of
non-equal densities. While this case will be studied in detail elsewhere [9], here we only
mention a striking result: as long as ηL < N+/(N+ + N−) < ηH, all domains which reside in
the fluid are equally populated with positive and negative particles. The excess numbers of
particles of the majority species reside in the condensate. This behaviour is a result of the fact
that the two currents emitted from a domain of length n are equal to the maximal current, up to
corrections of order 1/n. The condensate is therefore stationary in the thermodynamic limit
even when the densities are not equal. The condensate thus emits equal currents of (+) and
(−) particles. Hence, domains in the fluid cannot experience the fact that the overall densities
in the system are not equal. Figure 6 depicts the average relative density η of positive particles
in domains of various sizes, as measured in a large system for ε = −0.9. It is readily seen that,
on average, domains in the fluid are neutral, whereas the relative density in the macroscopic
domain compensates for the excess of positive particles.

Acknowledgments

This work was partially carried out while CG was a Meyerhoff Visiting Professor at the
Weizmann Institute. Support of the Albert Einstein Minerva Center for Theoretical Physics
and the Israel Science Foundation (ISF) is gratefully acknowledged.

References

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Krug J 1991 Phys. Rev. Lett. 67 1882
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[4] Popkov V and Schütz G M 2003 J. Stat. Phys. 112 523
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[6] Kafri Y, Levine E, Mukamel D, Schütz G M and Willmann R D 2003 Phys. Rev. E 68 035101
[7] Evans M R, Levine E, Mohanty P K and Mukamel D 2004 Eur. Phys. J. B 41 223
[8] For reviews see Evans M R 2000 Braz. J. Phys. 30 42

Schütz G M 2003 J. Phys. A: Math. Gen. 36 R339
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